FANDOM


Javelin

US Marine firing a Javelin

For the British Javelin missile, see Javelin Surface-to-Air Missile.



The FGM-148 Javelin is a United States-made man-portable anti-tank guided missile fielded to replace the Dragon antitank missile.

OverviewEdit

Javelin is a fire-and-forget missile with lock-on before launch and automatic self-guidance. The system takes a top-attack flight profile against armored vehicles (attacking the top armor which is generally thinner) but can also take a direct-attack mode for use against buildings or fortifications. This missile also has the ability to engage helicopters in the direct attack mode. The missile reaches a peak altitude of 150 m (500 ft) in top-attack mode and 60 m in direct-fire mode. The missile is equipped with an imaging infrared seeker. The tandem warhead is fitted with two shaped charges: a precursor warhead to detonate any explosive reactive armor and a primary warhead to penetrate base armor. The Javelin was used in the 2003 Invasion of Iraq], with devastating effects on the Iraqi version of T-72s and Type 69 tanks.

The missile is ejected from the launcher so that it reaches a safe distance from the operator before the main rocket motors ignite; a "soft launch arrangement". This makes it harder to identify the launcher and allows it to be fired from within buildings; however, back-blast from the launch tube still poses a hazard to nearby personnel. Thanks to this "fire and forget" system, the firing team may move on as soon as the missile has been launched.

The missile system is carried most often by a two man team consisting of a gunner and an ammo bearer, although it can be fired with just one person if necessary. While the gunner aims and fires the missile, the ammo bearer scans for prospective targets and watches for threats such as enemy vehicles and troops.

DevelopmentEdit

In 1983, the United States Army introduced its AAWS-M (Advanced Anti-Tank Weapon System—Medium) requirement, and in 1985, the AAWS-M was approved for development. In August 1986, the Proof-of-Principle (POP) phase of the development began, with $30 million contract awarded for technical proof demonstrators: Ford Aerospace (laser-beam riding), Hughes Aircraft Missile System Group (imaging infra-red combined with a fiber-optic cable link) and Texas Instrument (imaging infra-red).[6] In late 1988, the POP phase ended, and in June 1989, the full-scale development contract was awarded to a joint venture of Texas Instruments and Martin Marietta (now Raytheon and Lockheed-Martin). The AAWS-M received the designation of FGM-148.

In April 1991, the first test-flight of the Javelin succeeded, and in March 1993, the first test-firing from the launcher succeeded. In 1994, low levels of production were authorized, and in 1996 the first Javelins were deployed with US Army units.

Test and evaluationEdit

Development test and evaluation (DT&E) is conducted to demonstrate that the engineering design and development process is complete. It is used to reduce risk, validate and qualify the design, and ensure that the product is ready for government acceptance. The DT&E results are evaluated to ensure that design risks have been minimized and the system will meet specifications. The results are also used to estimate the system’s military utility when it is introduced into service. DT&E serves a critical purpose in reducing the risks of development by testing selected high-risk components or subsystems. DT&E is the government developing agency tool used to confirm that the system performs as technically specified and that the system is ready for field testing.

DT&E is an iterative process of designing, building, testing, identifying deficiencies, fixing, retesting, and repeating. It is performed in the factory, laboratory, and on the proving ground by the contractors and the government. Contractor and government testing is combined into one integrated test program and conducted to determine if the performance requirements have been met and to provide data to the decision authority.

The General Accounting Office (GAO) published a report questioning the adequacy of Javelin testing. The report, called “Army Acquisition—Javelin Is Not Ready for Multiyear Procurement”, opposed entering into full-rate production in 1997 and expressed the need for further operational testing due to the many redesigns undergone.

Previously in 1995 the Secretary of Defense, William Perry, had set forth five new operational test initiatives. These included: 1) getting operational testers involved early in development; 2) use of modeling and simulation; 3) integrating development and operational testing; 4) combining testing and training; and 5) applying concepts to demos and acquisitions.

The late-phase development of the Javelin retroactively benefited from the then new operational test initiatives set forth by the Secretary of Defense, as well as further test conducted as a consequence of the Army’s response to the GAO report. Before the Milestone III decision and before fielding to 3rd Battalion 75th Ranger Regiment at Fort Benning (also Army Rangers, Special Forces, airborne, air assault, and light infantry), the Javelin was subjected to limited parts of the five operational test and evaluation initiatives, as well as a portability operational test program (an additional test phase of the so-called Product Verification Test ) which included live firings with the full-rate configuration weapon.

Per initiatives and as a DT&E function, the Institute for Defense Analyses (IDA) and the Defense Department’s Director of Operational Test and Evaluation (DOT&E) became involved in three development test activities, including: 1) reviewing initial operational test and evaluation plans; 2) monitoring initial operational test and evaluation; and 3) structuring follow-on test and evaluation activities. The results of these efforts detected problems (training included) and corrected significant problems which led to modified test plans, savings in test costs, and GAO satisfaction.

Qualification testingEdit

The Javelin Environmental Test System (JETS) is a mobile test set for Javelin All-Up-Round (AUR) and the Command Launch Unit (CLU). It can be configured to functionally test the AUR or the CLU individually or both units in a mated tactical mode. This mobile unit may be repositioned at the various environmental testing facilities. The mobile system is used for all phases of Javelin qualification testing. There is also a non-mobile JETS used for stand-alone CLU testing. This system is equipped with an environmental chamber and is primarily used for Product Verification Testing (PRVT). Capabilities include: Javelin CLU testing; Javelin AUR testing; Javelin Mated Mode testing; Javelin testing in various environmental conditions; and CLU PRVT.

The All-up-Round Test Sets includes: Extreme temperature testing; Missile tracker testing (Track rate error, Tracking sensitivity); Seeker/focal plane array testing (Cool-down time, Dead/defective pixels, Seeker identification); Pneumatic leakage; Continuity measurements; Ready time; and Guidance sections (Guidance commands, Fin movement).

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.